Oxidative stress activates a specific p53 transcriptional response that regulates cellular senescence and aging

نویسندگان

  • Valentina Gambino
  • Giulia De Michele
  • Oriella Venezia
  • Pierluigi Migliaccio
  • Valentina Dall'Olio
  • Loris Bernard
  • Simone Paolo Minardi
  • Maria Agnese Della Fazia
  • Daniela Bartoli
  • Giuseppe Servillo
  • Myriam Alcalay
  • Lucilla Luzi
  • Marco Giorgio
  • Heidi Scrable
  • Pier Giuseppe Pelicci
  • Enrica Migliaccio
چکیده

Oxidative stress is a determining factor of cellular senescence and aging and a potent inducer of the tumour-suppressor p53. Resistance to oxidative stress correlates with delayed aging in mammals, in the absence of accelerated tumorigenesis, suggesting inactivation of selected p53-downstream pathways. We investigated p53 regulation in mice carrying deletion of p66, a mutation that retards aging and confers cellular resistance and systemic resistance to oxidative stress. We identified a transcriptional network of ~200 genes that are repressed by p53 and encode for determinants of progression through mitosis or suppression of senescence. They are selectively down-regulated in cultured fibroblasts after oxidative stress, and, in vivo, in proliferating tissues and during physiological aging. Selectivity is imposed by p66 expression and activation of p44/p53 (also named Delta40p53), a p53 isoform that accelerates aging and prevents mitosis after protein damage. p66 deletion retards aging and increases longevity of p44/p53 transgenic mice. Thus, oxidative stress activates a specific p53 transcriptional response, mediated by p44/p53 and p66, which regulates cellular senescence and aging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of glucose metabolism by p53: Emerging new roles for the tumor suppressor

p53 is well known as the "guardian of the genome" for differentiated and neoplastic cells. p53 induces cell-cycle arrest and cell death after DNA damage and thus contributes to the maintenance of genomic stability. In addition to this tumor suppressor function for pro-oncogenic cells, p53 also plays an important role as the central regulator of stress response by maintaining cellular homeostasi...

متن کامل

Caveolin-1 regulates the antagonistic pleiotropic properties of cellular senescence through a novel Mdm2/p53-mediated pathway.

We show that caveolin-1 is a novel binding protein for Mdm2. After oxidative stress, caveolin-1 sequesters Mdm2 away from p53, leading to stabilization of p53 and up-regulation of p21(Waf1/Cip1) in human fibroblasts. Expression of a peptide corresponding to the Mdm2 binding domain of caveolin-1 is sufficient to up-regulate p53 and p21(Waf1/Cip1) protein expression and induce premature senescenc...

متن کامل

Polymerase I and transcript release factor (PTRF)/cavin-1 is a novel regulator of stress-induced premature senescence.

According to the "free radical theory" of aging, premature senescence induced by oxidative stress contributes to organismal aging. Polymerase I and transcript release factor (PTRF)/cavin-1 is a structural protein component of caveolae, invaginations of the plasma membrane involved in signal transduction. We show that oxidative stress up-regulates PTRF/cavin-1 protein expression and promotes the...

متن کامل

Caveolin-1 regulates oxidative stress-induced senescence in nucleus pulposus cells primarily via the p53/p21 signaling pathway in vitro

Previous studies have indicated that cellular senescence is a critical underlying mechanism of intervertebral disc degeneration. However, the precise mechanism by which cellular senescence accelerates disc degeneration has not been fully elucidated. Caveolin‑1 has recently emerged as an important regulator of cellular senescence. Therefore, the aim of the present study was to investigate whethe...

متن کامل

Bach1 Deficiency and Accompanying Overexpression of Heme Oxygenase-1 Do Not Influence Aging or Tumorigenesis in Mice

Oxidative stress contributes to both aging and tumorigenesis. The transcription factor Bach1, a regulator of oxidative stress response, augments oxidative stress by repressing the expression of heme oxygenase-1 (HO-1) gene (Hmox1) and suppresses oxidative stress-induced cellular senescence by restricting the p53 transcriptional activity. Here we investigated the lifelong effects of Bach1 defici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2013